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The Turton-Levenspiel correlation for the drag coefficient of a sphere is employed to compare 
recently proposed explicit equations to predict the free-fall conditions. Predictions of four 
different expressions are explored over a wide range of Archimedes number. 

A free-falling particle reaches its constant terminal velocity, when the weight of the 
particle is exactly balanced by the sum of the buoyancy and the resisting force caused 
by the flow of fluid around the particles. The force balance can be recast into the 
dimensionless form as 

(1) 

Clift et al. l presented a multi-segment correlation for the drag coefficient which 
consists of six polynomial equations with a total of 18 fitted constants. T,he need for 
such a complicated regression equation was questioned by Turton and Levenspiel2 • 

These authors proposed the five-constant equation that correlates the available 
experimental data very well in the subcritical regime (Ret < 2. lOS): 

24 0·413 
Co = - (1 + 0·173Re?·6S7) + ------:-:-

Ret 1 + 16 300Re;1.09· 
(2) 

The correlation developed by Flemmer and Banks3 also provides a very good des
cription of experimental data on the drag coefficient of a settling sphere: 

(3a) 
where 

E = 0·261Reo.369 - 0·105Reo.431 -t t 

0'124 
(3b) 
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Our computations showed that the differences in predictions of Eqs (2) and (3a,b) 
range from -4% to +8%. The mean value of the deviations amounts to ±3·5%. 
This compares well with an accuracy of ± 10% (90% confidence interval) given by 
Turbon and Levenspiel2 for their Eq. (2). Therefore, it appears that the free-fan 
conditions of spheres can be predicted by Eq. (1) in combination with Eq. (2) or 
with Eqs (3a,b) quite accurately throughout the entire Reynolds number range. It is 
of interest to note that the Eq. (2) and Eqs (3) are capable of showing a minimum 
value of the drag coefficient at a Reynolds number around 4 000. 

In order to eliminate the need for an iterative solution, explicit relationships were 
recently developed to predict the terminal velocity. Zigrang and Sylvester4 proposed 
an explicit equation for particle settling velocities in liquid-solid systems based 
upon the work of Barnea and Mizrahis and Barnea and Mednick6• This general 
correlation was originally proposed to predict the fall velocity of the interface that 
develops during gravity sedimentations of monodisperse particles. In its limit this 
expression gives the terminal velocity of an isolated spherical particle. The original 
equation of Zigrang and Sylvester4 can be rewritten into the dimensionless form as 

Ret = 1·8329Ar1/2 + 29·025 - (106·4Ar1/2 + 842·44)1/2 . (4) 

Turton and Clark 7 and Wesselingh8 developed empirical relationships of other 
form. Their expressions are weighted combinations of the asymptotic relationships 
for very low and very high Reynolds number. With the use of the Reynolds and 
Archimedes number as variables, these expressions can be recast into the form 
consistent with Eq. (4). The correlation of Turton and Clark 7 takes the form 

Ar1/ 3 

Re = -----------------------------
t (10.82/Aro.s49 + 0.6262/Aro.137)1.214 

(5) 

for Ret < 2.105• 

The interpolation formula of Wesselingh8 also covers the entire region of Reynolds 
number and can be rewritten as 

(6) 

In a very recent work of ours9 , we have developed a polynomial equation for the 
free-fall conditions of a single particle: 

(7) 
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where 
peA) = ((0'0017795A - 0'0573) A + 1'0315) A - 1·26222 (7a) 

R(A) = 0·99947 + 0·01853 sin (1'848A - 3·14) (7b) 
and 

A = log Ar. 

The purpose of this brief communication is to compare the aforementioned explicit 
equations that make it possible to determine rapidly the particle terminal velocity. 

RESULTS AND DISCUSSION 

At first we made systematic computation of the free-fall conditions from Eqs (1) 
and (2) for selected values of the Archimedes number ranging from 1 to 4. 107 • 

The equations were solved by a simple technique such as the interval halving with an 
accuracy of 5 significant figures. The computed values of the Reynolds number 
are presented in Table 1. It is believed that these results are the best available re
presentation of the free-fall conditions of a sphere. 

The explicit expressions (4)-(7) can be viewed as more or less modified forms of 
a compilation of data on the drag coefficient of spheres. In order to compare the 
explicit equations, values of the drag coefficient were computed from the respective 
correlations with the aid of Eq. (1). Such results were compared to the values of the 
drag coefficient calculated with the use of the solutions presented in Table I. The 
relative deviations of the predictions of Eqs (4) - (7) are plotted in Fig. l. 

The equation by Zingrang and Sylvester shows a systematic error and the largest 
deviations. With respect to the primary purpose of the original correlation, this 
fact seems to be quite understandable. Both equations by Turton and Levenspiel 
and by Wesselingh show a similar behaviour. Their mean relative deviations amount 
to 11 and 10%; respectively. The maximum deviations do not exceed - 22 and 
- 20%, respectively. As can be seen in Fig. 1, Eq. (7) provides a very accurate des
cription over the broad range of Archimedes number (i.e., Ar < 4. 107 ). The average 
deviation amounts to 2·6% and the maximum deviation is 6,2%. The corresponding 
relative differences in Reynolds number can be estimated by Eq. (8) 

1 - (1 + IlCo/Cor/2 

(1 + IlCO/CO)1/2 
(8) 

that was deduced from Eq. (1). The maximum deviations of Eq. (5) (-22%), Eq. 
(6) (-20%) and Eq. (7) (6'2%) in Co lead to maximum errors ofless than 13%,12% 
and - 3%, respectively, in Ret. These results are plotted in Fig. 2. 

A useful extension of this work is to explore predicting the minimum fluidization 
from the free-fall conditions with the use of the empirical Richardson-Zaki rela-
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tionshiplo 
(9) 

Our experience suggests that the Richardson-Zaki exponent can reliably be pre
dicted by the empirical correlation of Garside and Al-Dibounill with an average 
deviation of less than 10%: 

5·09 + 0·284Reo.877 
n = t 

1 + 0·104Re?·877 ' 
(10) 

Using the voidage emf = 0'4, the minimum fluidization points were computed from 
Eqs (7), (9) and (10) and compared with the predictions of the Ergun equation12 ,13 

1·75 R 2 150 1 - emf R A 0 
-3- emf + 3 emf - r = • 
emf Gmf 

t/I = 1. (11) 

TABLE I 

Free-fall conditions predicted with the use of the Turton-Levenspiel correlation for the drag 
coefficient2 

Ar 

2 
3 
4 
5 
6 
7 

8 
9 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
200 
300 
400 

Ret 

0'054178 
0'10686 
0·15849 
0'20927 
0'25930 
0'30864 
0'35743 
0'40569 
0'45335 
0'50059 
0'95173 
1'3738 
1'7747 
2'1586 
2'5287 
2·8867 
3'2344 
3'5730 
3'9033 
6'8824 
9'4788 

11'836 

Ar 

500 
600 
700 
800 
900 

1000 
200() 
3000 
4000 
5000 
6000 
7000 
8000 
9000 

10 000 
20000 
30000 
40000 
50000 
60000 
70000 
80000 

Ret Ar Ret 

14'023 90000 454'52 
16'078 100000 484'60 
18'028 200000 733'40 
19'891 300 000 928'93 
21'680 400000 1095'2 
23-404 500000 1242'2 
38'312 600 000 1 375'1 
50'720 700000 1497'1 
61 '701 800000 1 610'5 
71'716 900000 1 716'8 
81'013 1000 000 1 817'0 
89'750 2000000 2615'1 
98'030 3000000 3213'6 

105'93 4000000 3709'7 
113· 50 5000000 4141'1 
177'69 6000000 4527'2 
229'91 7000000 4879'3 
275'49 8000 000 5204'8 
316'61 9000000 5508'6 
354'47 10000000 5794'5 
389'77 2.107 8062'9 
423'01 4.107 Il 199 
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The deviations range from - 20% to 26% throughout the wide region of Archimedes 
number and they can be seen in Fig. 3. The extrapolation has been made from one 
fluidization limit to the other one. With respect to this fact, the agreement seems to 
be very reasonable. 

FIG. I 

Relative deviations of the drag coefficient 
determined from the explicit relationships 
for the particle terminal velocity. 1 Zigrang 
and Sylvester4 ; 2 Turton and Clark 7; 3 Wes
selingh8 ; .. Hartman et a1. 9 

FIG. 3 

Relative deviations of the minimum fluidiza
tion velocity determined with the use of the 
Richardson-Zaki equation 10 and the cor
relation of Garside and Al-Dibouni11 . The 
Ergun equation 12 is taken as a standard 
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FIG. 2 

Maximum errors of the explicit equations. 
Ar E (1.7'5.107 ) 2 Turton and Clark7 ; 

3 Wesselingh8 ; .. Hartman et a1.l}. The solid 
line depicts Eq. (8) 

0.07'1 6.3 167 Reml 1890 
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SYMBOLS 

Ar = d2gflc(fls - (lc)/Jlf Archimedes number 
CD drag coefficient of a sphere 
ACD inaccuracy in the drag coefficient 
Cb drag coefficient determined from an explicit relationship for Ret 
C~L drag coefficient predicted by the correlation of Turton and Levenspiel, Eq. (2) 
dp diameter of sphere, m 
g acceleration due to gravity, m s-2 

n Richardson-Zaki exponent 
Remc = UmcdpflrlJlc Reynolds number at the minimum fluidization 
Ret Reynolds number at the terminal velocity of sphere 
ARet inaccuracy in Ret 
Re~c Reynolds number predicted by the Ergun equation, Eq. (11) 
Re:"c Reynolds number determined with the use of the Richardson-Zaki equation, Eq. (9) 
.1'1 = 100 (C~L - Cb)/C~L relative deviation, % 
.1'2 = 1 00 (Re~c - Re:"c)/ Re;,c relative deviation, I:' 
Ut free-fall (terminal) velocity, m s-1 
c bed voidage 
Gmc bed voidage at the minimum fluidization 
Jir fluid viscosity, kg m - 1 S - 1 

(1f fluid density, kg m - 3 

(}s particle density, kg m - 3 

'II particle sphericity 
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